Structural Analyses of Borane and Chloroborane Adducts of 1,3,5-Dithiaza-, -Dioxaza-, -Thiadiaza-, and -Triazacyclohexanes and Their Rearrangement Products, Boracyclohexanes

Angelina Flores-Parra,*[a] Sonia A. Sánchez-Ruíz,[a] and Carlos Guadarrama-Pérez[a]

Keywords: Borane adducts / Triazacyclohexanes / Thiadiazacyclohexanes / Dioxazacyclohexanes / Boracyclohexanes / Rearrangements

Structural and conformational studies performed by ¹H-, ¹¹B-, ¹³C-, two-dimensional, and variable-temperature NMR spectroscopy of borane and chloroborane adducts of 1,3,5heterocyclohexanes and their rearrangement products, boracyclohexanes, are reported. N-Methyl derivatives gave equatorial N-borane adducts whereas the N-isopropyl

derivatives produced the axial borane compounds. Rearrangement reactions of the adducts gave the first examples of chloroboracyclohexanes bearing boron and nitrogen atoms as stable stereogenic centers. BClH2 and BCl₂H adducts were found to be more stable towards ring rearrangement than the corresponding N-BH $_3$ analogs.

Introduction

We have been systematically studying the synthesis and particularly the coordination behavior of 1,3,5-heterocyclohexanes bearing heteroatoms such as O, S, and N, which are rich in lone pairs and good ligands for Lewis acids.[1] Reactions with boron^[1a,1b,1e-1f] and lithium^[1g] compounds were investigated because these reagents function as coordination probes conveniently studied by NMR techniques.

Herein, we report extended studies of chloroboranes, which are more acidic reagents which could give stronger coordination bonds and more stable adducts, and of new families of heterocycles: 1,3,5-thiadiazacyclohexanes and 1,3,5-dioxazacyclohexanes. Because these heterocycles are difficult to prepare, few examples of them were known, [2] but fortunately we have recently established suitable reaction conditions for their preparation.[1h]

Results and Discussion

Herein, we present the study of the reactions of BH3·THF and various chloroborane DMS with the heterocycles 3,5-dialkyl-1,3,5-thiadiazacyclohexane (1, 2,^[1h,2] and $3^{[1h]}$), 5-alkyl-1,3,5-dioxazacyclohexane (4 and $5^{[1h]}$), 5alkyl-1,3,5-dithiazacyclohexane (6, 7,[1d] and 8[1g]), and 1,3,5-trimethyl-1,3,5-triazacyclohexane^[1f] (9) (Figure 1).

Acid-base studies with BH₃ as the Lewis acid partner, showed that the potential basicity decreases in the order N > S > O. Therefore, we would expect mono(N-BX₃) derivatives to form from the reactions of 1-9 with BH₃ or chloroborane compounds, and that two or even three borane molecules would coordinate to heterocycles 1-3 and 9. Also,

Figure 1

we were interested to find out if coordination would freeze the conformations of the heterocycles. NMR studies of heterocycles 1-7 and 9 showed that they are in ring- and nitrogen-conformational equilibrium at room temp. (400-MHz ¹H NMR), whereas compound 8 has a preferred chair conformation with the 2-methyl group in the equatorial and the *N*-methyl group in the axial position. [1g]

When heated, N-BH₃ adducts of 1,3,5-dithiazacyclohexanes rearrange into boracyclohexanes by exchange of boron and carbon atoms^[1b] (Scheme 1). The stability of these boraheterocycles depends on the size of the N-alkyl group: Those with bulky groups are rapidly converted into N-(BH₃)-dimethylalkylamine complexes.^[1b] This rearrangement was not found for 1,3,5-triazacyclohexanes. Therefore, we wanted to investigate if these rearrangements occur for other heterocyclohexanes or with the more reactive chloroboranes, if the more acidic boron atom in the resulting chloroborate allows better coordination and a more stable ring, if the chlorine atom could have a preferred position in a frozen ring and thus result, stereoselectively, in a stereogenic boron atom. In addition, we wanted to study the influence of the chlorine atom on the reactivity and NMR data and on the conformational behavior.

E-mail: aflores@mail.cinvestav.mx

⁶ R= CH3, R'= H 7 R= iPr, R'= H 8 R= CH3, R'= CH3

[[]a] Chemistry Department, Centro de Investigación y de Estudios Avanzados del I.P.N. A. P. 14-740, C. P. 07000, México D.F., México Fax: (internat.) + 52-5/747-7113

$$\begin{array}{c} R \\ N \\ BH_3 \cdot THF \\ X = S \text{ or NR} \\ \\ S \\ S \\ N \\ R \\ \end{array}$$

$$\begin{array}{c} BH_3 \\ X = S \text{ or NR} \\ \\ X = S$$

Scheme 1. Rearrangement of the BH3 adducts

Borane Adducts

NMR spectroscopy showed that the equimolar reaction of thiadiazacyclohexane 1 with BH3·THF resulted in monoadduct 10, whereas an excess of borane led to bis(borane) 11 (Figure 2). The ¹³C-NMR spectrum of compound 1, at -90°C in [D₈]THF (100.53 MHz), did not indicate a preferred conformation, as the CH₃ and SCH₂N resonances were averaged, indicating that ΔG^{\dagger} for the ring inversion is very low. In contrast, 10 and 11 are present in frozen conformations, because the CH2 groups have geminal coupling patterns. Their N-BH3 groups are in equatorial positions as shown by the position of the N-CH₃ group in the ¹³C spectrum at $\delta \approx 45$; [1e] this conformation is also supported by an X-ray diffraction structure. [1i] The bis(borane) 11 is an analog of the reported compound 12.[1f] In solution, adduct 10 is slowly transformed into 11 and the free heterocycle. ¹H-NMR data are summarized in Table 1.

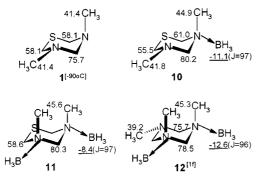


Figure 2. ¹¹B- and ¹³C-NMR chemical shifts of 10-12

The reaction of equimolar amounts of BH₃·THF and 3,5-diisopropyl-1,3,5-thiadiazacyclohexane (2) afforded the stable *N*-borane 13 with the two isopropyl groups in equatorial positions and the BH₃ group in the axial position (Figure 3). Compound 13 is more stable than 14,^[1b] which could be observed only at low temperature. In the presence of an excess of BH₃·THF, 13 rapidly rearranged into 31 (vide infra, Figure 8), whereas the triisopropyltriazacyclohexane 15^[1f] gave a small amount of the bisadduct 16.^[1f] The reaction of BH₃·THF with the dioxazacyclohexane 4 also yielded an *N*-borane, 17, as shown by NMR spectroscopy at room temp. The stability of the borane adducts is shown by the order of the ease of rearrangemen: 14 > 17 > 13 > 15.

The room-temp. NMR spectra of 13–17 (Figure 3) show that the ring conformation is preferentially that of a chair

with the bulky isopropyl groups in equatorial positions, as shown by the $^{13}\text{C-}\delta$ values for CH ($\delta\approx54$; for the axial position $\delta\approx46$). [1e] These heterocycles provide examples of axial BH $_3$ groups. The frozen conformation of 13 that results from BH $_3$ addition makes the N atoms stereogenic centers and the C–CH $_3$ groups diasterotopic. The signal of CH $_3$ groups of the isopropyl group attached to the coordinated nitrogen atom appear at $\delta=15.9$ and 15.7, whereas those of the ones attached to the free nitrogen atom appear at $\delta=18.8$ and 18.4. In the free ligand 2 the signals of all the CH $_3$ groups appear at $\delta=20.1$.

Chloroborane Adducts

We prepared the chloroborane adducts of 1,3,5-heterocy-clohexanes 18-22 and 24-29. The reaction of a commercial mixture of BH₂Cl, BHCl₂, and BH₃ (in the ratio 90:8:2, respectively), in DMS, with compounds 6 and 8 produced, in the same ratio, the corresponding adducts 18-21 (Figure 4). Upon coordination, the ring of adducts 18-21 adopted a preferred conformation with the *N*-methyl group in the axial position as indicated by their ¹³C- δ values in the range $\delta = 37.7-40.2$ (Table 2). To analyze the trends in the NMR spectra, the data of compounds 18-21 were compared to those of the BCl₃ (22) and BH₃ (23^[1b]) adducts of 6. In the ¹H as well as the ¹¹B spectra, the resonances of the CH₂ groups close to the N-B bond are systematically shifted to higher frequencies with an increasing number of chlorine atoms. The coupling constants ¹J(B-H) increase in the same order.

We found that chloroborane adducts are more stable to ring rearrangement than the corresponding *N*-BH₃ analogs, making them useful for the observation and study of coordination compounds of heterocycles with bulky groups. For example, we obtained adduct **24**, derived from 3-isopropyl-1,3,5-dioxazacyclohexane (Table 1, Figure 5). It is moderately stable and could be observed by NMR, but we were not able to detect the corresponding BCl₂H adduct. The *N*-BH₃ adducts of **3** and **5** could not be observed because they are rapidly reduced to the corresponding dimethyl-amineborane.

Heterocycle **1** has two N sites for borane coordination and readily formed monoadduct **25** and bis(monochloroborane) adduct **26**. Both are stable compounds with the *N*-chloroborane group in the equatorial position as the preferred conformation. In contrast, only one example of an *N*-BCl₃ adduct of a 1,3,5-thiadiazacyclohexane was prepared, **27**, which is a weak complex that decomposes on vacuum evaporation of the solvent. According to its ¹³C-NMR spectrum, the BCl₃ adopts an axial position (Figure 5). An interesting observation was that BCl₃ adducts of the studied heterocycles are less stable than adducts with at least one B–H bond. This can be explained by the stabilization resulting from interaction between the hydrides on B and the protons on C, as discussed in the next paper.^[1i]

The N-BH₂Cl monoadduct **28** and bisadduct **29** of 1,3,5-triazacyclohexane (9) were obtained. The BH₂Cl groups oc-

Table 1. ¹H-NMR data (400 MHz in CDCl₃ at 25°C or in [D₈]THF at low temperature; for atomic numbering see Figure 1)

Compd.	R^2 or 2 - $H_{eq}/2$ - H_{ax}	$4-H_{eq}/4-H_{ax}$	$6-H_{eq}/6-H_{ax}$	N^{1-} R	N^3 -R	N^5 -R
1 (-90°C)	3.82/4.57	3.53/3.93	3.82/4.57		2.56	2.56
2 (−95°C)	3.92/4.15	4.76/4.24	3.92/4.15		3.13	3.13
3	4.20/4.58	4.21/4.04	4.20/4.58		3.73	3.73
4 (-80°C)	5.12/5.04	4.68	4.68			3.42
5 (−60°C)	5.11/5.16	4.13/4.59	4.98/4.83			4.63
6 (-80°C)	3.56/4.60	3.93/4.95	3.93/4.95			2.59
7 (-90°C)	3.68/4.65	4.29/4.80	4.29/4.80			3.73
8 (27°C)	1.46/4.24	4.09/4.67	4.09/4.67			2.56
9 (−90°C)	3.86/3.18	3.86/3.18	3.86/3.18	2.83	2.83	2.83
10	3.60/4.14	3.55/4.23	3.66/3.81		2.65	2.61
11	3.54/3.85	3.97/3.71	3.54/3.85		2.47	2.47
12 ^[1f]	3.69/2.59	3.54/3.12	3.54/3.12	2.30	2.79	2.79
13	4.14	4.08/3.51	3.82/3.96		2.99	4.33
15 ^[1f]	3.75/3.07	4.02/3.16	4.02/3.16	2.81	2.81	4.19
16 ^[1f]	4.25/3.64	4.43/4.08	4.43/4.08	3.02	3.89	3.89
17	5.16/4.88	4.80/4.44	4.80/4.44			4.06
24	4.93	4.53/4.28	4.53/4.28			4.37
25	3.66/4.22	3.34/4.32	3.73/4.00		2.61	2.73
28	2.90/2.76	3.74/3.33	3.74/3.33	2.37	2.37	2.92
30 ^[1f]	3.65/3.36	3.73/4.03	3.65/3.36	2.30	2.30	2.47
33	1.39/4.41	3.45/4.94		2.79	2.72	,
34	1.40/4.22	3.73/5.12		3.10	2.95	
38 (25°C)	2.65/4.05	3.93/4.30		2.80	-	2.71

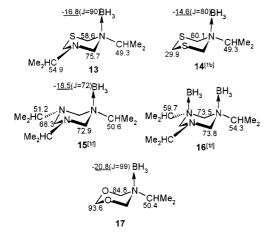


Figure 3. Borane adducts of N-isopropyl heterocycles; ^{11}B -NMR data are shown, the boron signal of 16 is masked by that of 15

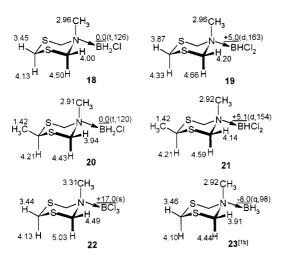


Figure 4. ¹¹B- and ¹H-NMR data of 18-23

Table 2. 13 C-NMR data (100.5 MHz, in CDCl₃ at 25°C or [D₈]THF at low temperature; for atomic numbering see Figure 1; * = quaternary nitrogen atom)

Compd.	C-2	C-4	C-6	N^*-R
1 (-90°C) 2 (-95°C) 3 4 (-20°C) 5 (-60°C) 6 (-90°C) 7 (-80°C) 8 9 (-100°C) 18 19 20 21 22 23 32eq (-65°C) 37 (-55°C)	58.1 54.1 59.2 95.4 95.2 34.3 34.3 44.3 80.7 30.9 30.7 42.5 42.0 30.3 30.2 29.9 32.0	75.7 69.3 70.1 81.3 80.2 59.9 60.3 75.9 60.0 59.1 61.0 59.7 58.9 62.2 62.2 63.9 64.6	58.1 54.1 59.6 81.3 81.3 59.9 56.9 60.0 59.1 61.0 59.7 58.9 62.2	41.4 50.3 54.6 50.5 56.0 37.5 45.8 37.0 39.7, ^[b] 41.4 ^[a] 40.2 38.3 39.5 37.7 38.6 42.9 44.5*, ^[a] 47.7* ^[b] 43.8*, ^[a] 52.6* ^[b] 44.3*, ^[a] 53.1* ^[b]

[[]a] Axial position. — [b] Equatorial position.

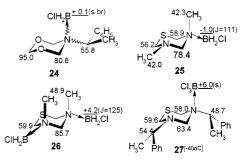


Figure 5. ^{11}B - and ^{13}C -NMR chemical shifts and the preferred conformations of **24**, **25**, **26**, and **27**

cupy equatorial positions and the ring is not fluxional. The ¹³C chemical shifts of **28** and **30**^[1f] were similar, and those of **29** and **12** were also similar^[1f] (Figures 2, 6).

Figure 6. ¹¹B- and ¹³C-NMR data and the preferred conformations of **28**, **29**, and **30**

1,3,5,6-Thiadiazaboracyclohexane (31)

Herein, we report the first example of a 1,3,5,6-thiadiazaboracyclohexane (31), quantitatively formed by reaction of 1,3,5-thiadiazacyclohexane (2) and an excess of BH₃·THF in CHCl₃ at room temp. The 11 B-NMR spectrum of 31 shows a triplet at $\delta = -5.3$, characteristic of an S-BH₂←N group. The ring appears nondynamic on the time scale of the 1 H-NMR spectrum at room temp (Figure 7).

Figure 7. ¹³C-, ¹¹B-, and ¹H-NMR chemical shifts of 31 at 25°C

1,3,5,6-Dithiazaboracyclohexanes 32–36

2-Chlorobora-1,3,5-dithiazacyclohexanes 32-36 were formed by allowing the 1,3,5-dithiazacyclohexanes 6-8 to react with excess BH₂Cl·DMS in CHCl₃. The resulting structures were assigned by HETCOR, COSY, and APT NMR experiments. The positions of the chlorine atoms were determined by their effects on the ¹H resonances of the neighboring protons and by comparison with the analogous BH₂ compounds. The boron atom becomes a stereogenic center and two isomers were indeed observed. At room temp. compound 32 is an equilibrium mixture of the two conformers shown in Figure 8. At −65°C, both conformers were observed in the ¹³C- (Table 2) and ¹¹B-NMR spectra, for assignment a comparison with 37 was helpful. The conformer with the Cl atom in axial position was present in 70% abundance. At this temperature the ${}^{1}J(B-H)$ values of the two isomers differed significantly, with 161 Hz for equatorial B-H and 127 Hz for axial B-H, indicating frozen conformations.

Compound 8 with an excess of BH₂Cl produced the two diasteromers 33 and 34 in a 1:1 ratio (Figure 9). The ¹H-

Figure 8. ¹H- and ¹¹B-NMR data of 32 and 37

and ¹³C-NMR data indicate that the chair conformation is the preferred one for both molecules at room temp., and the C-CH₃ group anchors the molecule. Here, the boron atom and C-2 are stereogenic centers.

Figure 9. ¹³C-NMR data of 33, 34, and 38 at 25°C

To see if a more bulky *N*-substituent will also function as an anchor for ring inversion, we treated the 1,3,5-dithiaz-acyclohexane 7 in equimolar amounts with the mixture of chloroboranes for 5 h at room temp. The reaction products were the cyclohexanes 35 (60%) and 36 (40%) (Figure 10). Both compounds were shown by their $^1\text{H-NMR}$ spectra to be nonfluxional, and their boron and nitrogen atoms are stereogenic centers. The equatorial position of the isopropyl groups was found by $^{13}\text{C-NMR}$ spectroscopy (CH at $\delta=59.4$ and 54.7 in 35 and 36, respectively). An anomeric effect produced by the axial chlorine atom on the axial *N*-methyl group (which is deshielded) was observed for 33 and 35.

Conclusions

The 1,3,5-heterocyclohexanes and borane or chloroborane form stable adducts which have frozen conformations as shown by the geminal coupling pattern of the CH₂ groups. The values of the coupling constants in the frozen free heterocycles vary according to the nature of the heteroatom (OCH₂O: 5.9; SCH₂S: ca. 13.3; NCH₂N: 8.0; SCH₂N: 10.5–13.5). The corresponding values in the adducts do not show systematic trends except for the triazacy-

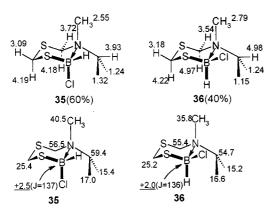


Figure 10. ¹³C-, ¹¹B-, and ¹H-NMR chemical shifts of 35 and 36

clohexanes and dithiazacyclohexanes where these values increase upon coordination [e.g., in 9 it increases from 8 Hz to 9.1 and 11.7 Hz, and in 6 (SCH₂N) it increases from 12.6 to 13.9–14.3 Hz, Table 3]. The frozen conformations are also deduced from the ${}^4J_{\rm w}$ couplings between the equatorial protons, the values of which vary between 1.2 to 2.6 Hz. In 37 this coupling occurs between the equatorial C–H and B–H, with J=2.0 Hz.

The configuration of the nitrogen atoms in borane and chloroborane adducts of triaza-, thiadiaza-, dithiaza-, and dioxazacyclohexanes is determined by the size of the N-substituents. The bulky isopropyl groups direct the borane units into the axial positions, while the methyl groups direct the boranes to the equatorial positions. ${}^{1}J(B-H)$ constants for axial BH_3 are smaller that the corresponding values for equatorial BH_3 , which could be attributed to a weaker coordination of axial borane.

That the formation of adducts resulted in frozen ring conformations indicate that there is a hydride-proton interaction. [1i] This is supported by the result that BCl₃ did not give stable adducts. The use of excess borane and chloroboranes led to new boracyclohexanes. The chloroborata compounds are more stable because SBHCl is more acidic than the SBH₂ group.

Experimental Section

¹H-, ¹³C-, and ¹¹B-NMR spectra were recorded with Jeol spectrometers at frequencies of 270 and 400 MHz for protons; δ values are referenced to TMS, and to BF₃·OEt₂ for ¹¹B-NMR spectra. – BH₃·THF was prepared as described.^[3] The BH_{3-n}Cl_n·S(CH₃)₂ mixture was purchased from Aldrich Co. Anhydrous solvents were prepared according to usual laboratory methods. – All reactions were carried out in inert atmosphere with oven-dried glassware. – Adducts 10, 11, 13, 17–21, 24–29, and boracyclohexanes 31–36 were analyzed only by variable-temperature, and two-dimensional ¹H-, ¹³C-, ¹¹B-NMR spectroscopy. Our attempts to isolate them from the mixture of adducts were unsuccessful because they are unstable. Therefore, we could not perform elemental analyses. However, their structures were derived by comparison to fully characterized similar compounds.^[1]

Preparation of Mono-N-BH₃ Adducts 10, 13, and 17. — General Procedure: To a solution of the corresponding heterocyclohexane (0.25 g) in 20 mL of dry THF, was added a solution of BH₃·THF (1.2 mmol) at -78 °C. The mixture was stirred for 5 min, and then the solvent was removed under vacuum leaving behind a mixture of adducts as white solids which were analyzed by NMR spectroscopy (10, 80%; 13, 85% and 17, 80%).

Preparation of 3,5-Bis(borane)-3,5-dimethyl-1,3,5-thiadiazacy-clohexane (11): To a stirred solution of 1 (0.25 g, 1.9 mmol) in 20 mL of dry THF, was added a solution of BH₃·THF (2.0 mmol) at 25°C. After 10 min, more BH₃·THF (4.1 mmol) was added and the reaction mixture was kept for 30 min at 50°C. The solvent was then removed under vacuum to give the adduct as a white solid. Compound 11 (80%, 0.24 g) was crystallized from CHCl₃. m.p. 40°C. - C₅H₁₈B₂N₂S (132.23): calcd. C 37.56, H 11.34, N 17.52; found C 37.51, H 11.46, N 17.36.

Preparation of N-BHCl₂ and N-BH₂Cl Adducts 18–21, 24–26, 28, and 29. — **General Procedure:** To a stirred solution of the corresponding heterocyclohexane (1, 5, 6, 8, or 9) (0.25 g) in 20 mL of dry CHCl₃, was added at -60° C a solution of 1 or 2 equiv. of BH_{3-n}Cl_n SMe₂. The reaction mixture was stirred for 5 min. The solvents were then removed under vacuum to afford the *N*-BHCl₂ and *N*-BH₂Cl adducts: **19** and **21** (8%); **24** (50%); **25** (95%); **26** (85%); **28** (40%), and **29** (95%). — Adduct **18** was crystallized from CHCl₃ and obtained in 80% yield (0.27 g). — C₄H₁₁BClNS₂ (183.53): calcd. C 26.18, H 6.04, Cl 34.94, N 7.63; found C 26.69,

Table 3. ²J(H-H) geminal coupling constants for CH₂ and ⁴J_w(H-H) for equatorial CH groups; for atomic numbering see Figure 1

Compd.	2-H	4-H	6-H	$^4J_{\mathrm{w}}(\mathrm{H}\mathrm{-H})$	Compd.	2-H	4-H	6-H	$^4J_{\mathrm{w}}(\mathrm{H}\mathrm{-H})$
1 (-90°C)	12.4	13.5	12.4		20		12.1	12.1	
2 (-95°C)	10.5	13.5	10.5		21		14.1	14.1	
3	13.5	12.1	13.5		22	14.0	14.3	14.3	
4 (-80°C)	5.9				23	13.9	13.9	13.9	2.0
5 (−60°C)	5.9	10.6	11.4		24		11.0	11.0	
6 (-80°C)	13.3	12.7	12.7	2.6	25	13.2	13.2	13.2	2.6
7 (−90°C)	13.2	13.2	13.2		28	9.8	10.8	10.8	
8 (27°C)		12.6	12.6		30 ^[1f]	11.6	13.8	13.8	1.8
9 (−90°C)	8.0	8.0	8.0		31 (25°C)		7.0		
10	12.6	13.3	12.6	2.5	32eq (-65°C)	13.2	12.8		
11	14.1	13.6	14.1		32ax (-65°C)	13.5	12.1		
12 ^[1f]	9.1	11.0	11.0	1.7	33		12.8		
13		12.5	11.5		34		13.1		
15 ^[1f]	7.8	11.0	11.0	1.7	35	13.1	13.2		
16 ^[1f]	12.8	14.7	14.7	1.6	36	13.0	12.4		
17	5.9	10.6	10.6	1.2	37 (−55°C)	12.9	12.5		2.0
18	14.0	14.0	14.0	2.1	38 (25°C)		12.7		
19	14.0	14.0	14.0	2.1					

H 6.09, Cl 34.83, N 6.62. — Adduct **20** was obtained in 85% yield (0.28 g). — $C_5H_{13}BClNS_2 \cdot CH_2Cl_2$ (282.49): calcd. C 25.51, H 5.35, N 4.96; found C 25.05, H 5.47, N 5.11.

Preparation of 3,5-Diisopropyl-1,3,5,6-thiadiazaboracyclohexane (31): To a solution of 1 (0.25 g, 1.33 mmol) in 20 mL of dry THF, was added a solution of BH₃·THF (1.2 mmol) at -78 °C; the resultant mixture was stirred for 5 min. It was then warmed to 25 °C, stirred for 5 min, and the solvent was removed under vacuum. The adduct was obtained as a white solid (70%, 0.19 g). - ¹⁵N NMR (CDCl₃, 25 °C, 270 MHz): $\delta = -238$.

Preparation of 6-Chloro-5-methyl-1,3,5,6-dithiazaboracyclohexanes 32–36. – General Procedure: To a solution of the corresponding heterocyclohexane (0.25 g) in 20 mL of dry CH₂Cl₂, was added 3 equiv. of a mixture of BHCl₂, BH₂Cl, and BH₃ in S(CH₃)₂ (90:8:2). The reaction mixture was stirred at 40 °C for 8 h, and the solvents were subsequently removed by evaporation to afford the dithiazaboracyclohexane **32–36** which were characterized by NMR spectroscopy.

Acknowledgments

We thank Conacyt-Mexico and TWAS (grant 97–337 RG/CHE/LA) for financial support. C. G.-P. is grateful to Conacyt-Mexico for a scholarship and Professor H. Nöth for helpful discussions.

- [1] [1a] A. Flores-Parra, N. Farfan, A. I. Hernádez-Bautista, L Fernández-Sánchez, R. Contreras, Tetrahedron 1991, 47, 6903-6914. [1b] A. Flores-Parra, G. Cadenas-Pliego, L. M. R. Martínez-Aguilera, M. L. García-Nares, R. Contreras, Chem. Ber. 1993, 126, 863-867. [1c] G. Cardenas-Pliego, R. Contreras, J. C. Daran, S. Halut, A. Flores-Parra, Phosphorus Sulfur Silicon 1993, 84, 9-15. [1d] G. Cadenas-Pliego, L. M. R. Martínez-Aguilera, A. M. Bello-Ramírez, M.-J. Rosales-Hoz, R. Contreras, J. C. Daran, S. Halut, A. Flores-Parra, Phosphorus Sulfur Silicon 1993, 81, 111-123. [1e] G. Cadenas-Pliego, M.-J. Rosales-Hoz, R. Contreras A. Flores-Parra, Tetrahedron: Asymmetry 1994, 5, 633-640. [1f] L. M. R. Martínez-Aguilera, G. Cadenas-Pliego, R. Contreras, A. Flores-Parra, Tetrahedron Asymmetry 1995, 6, 1585-1592. [1g] C. Guadarrama-Pérez, G. Cadenas-Pliego, L. M. R. Martínez-Aguilera, A. Flores-Parra, Chem. Ber. 1997, 130, 813-817. [1h] A. Flores-Parra, S. A. Sanchez-Ruiz, Heterocycles, in press. [1i] A. Flores-Parra, S. A. Sánchez-Ruiz, C. Guadarrama-Pérez, H. Nöth, R. Contreras, Eur. J. Inorg. Chem. 1999, 2069-2073, following paper.
- [2] [2a] L. Angiolini, R. P. Duke, R. A. Jones, A. R. Katritzky, J. Chem. Soc., Perkin Trans. 2 1972, 674-680. [2b] E. R. Braithwaite, J. Graymore, J. Chem. Soc. 1953, 143-145. [2c] E. R. Braithwaite, J. Graymore, J. Chem. Soc. 1950, 208-210.
- [3] H. C. Brown, C. W. Kramer, A. B. Levy, M. M. Midland, Organic Syntheses via Boranes, John Wiley and Sons, New York, 1975, p. 18–25.

Received December 14, 1999 [198427]